Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123213, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523847

RESUMO

Olive oil is a key component of the Mediterranean diet, rich in antioxidants and beneficial monounsaturated fatty acids. As a result, high-quality olive oil is in great demand, with its price varying depending on its quality. Traditional chemical tests for assessing olive oil quality are expensive and time-consuming. To address these limitations, this study explores the use of near infrared spectroscopy (NIRS) in predicting key quality parameters of olive oil, including acidity, K232, and K270. To this end, a set of 200 olive oil samples was collected from various agricultural regions of Morocco, covering all three quality categories (extra virgin, virgin, and ordinary virgin). The findings of this study have implications for reducing analysis time and costs associated with olive oil quality assessment. To predict olive oil quality parameters, chemical analysis was conducted in accordance with international standards, while the spectra were obtained using a portable NIR spectrometer. Partial least squares regression (PLSR) was employed along with various variable selection algorithms to establish the relationship between wavelengths and chemical data in order to accurately predict the quality parameters. Through this approach, the study aimed to enhance the efficiency and accuracy of olive oil quality assessment. The obtained results show that NIRS combined with machine learning accurately predicted the acidity using iPLS methods for variable selection, it generates a PLSR with coefficients of determination R2 = 0.94, root mean square error RMSE = 0.32 and ratios of standard error of performance to standard deviation RPD = 4.2 for the validation set. Also, the use of variable selection methods improves the quality of the prediction. For K232 and K270 the NIRS shows moderate prediction performance, it gave an R2 between 0.60 and 0.75. Generally, the results showed that it was possible to predict acidity K232, and K270 parameters with excellent to moderate accuracy for the two last parameters. Moreover, it was also possible to distinguish between different quality groups of olive oil using the principal component analysis PCA, and the use of variable selection helps to use the useful wavelength for the prediction olive oil using a portable NIR spectrometer.


Assuntos
Antioxidantes , Espectroscopia de Luz Próxima ao Infravermelho , Azeite de Oliva/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise dos Mínimos Quadrados , Agricultura
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 242: 118736, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759034

RESUMO

The estimation of soil phosphorus is essential for agricultural activity. The laboratory chemical analysis techniques are expensive and labor-intensive. In the last decade, near-infrared spectroscopy has been become used as an alternative for soil attributes analysis. It is a rapid technique, and inexpensive relatively. However, this technique requires a calibration step using different machine learning and chemometrics tools. This study aims to develop predictive models for total soil phosphorus and extractable phosphorus by the Olson method (P-Olson) using three regression methods, namely partial least squares (PLS), regression support vector machine (RSVM) and backward propagation neural network (BPNN), combined with a proposed variable selection algorithm (PARtest) and a genetic algorithm PLS (GA-PAS). Also, it aims to investigate the effect of the texture on the accuracy of the prediction. The results show that PARtest combined with PBNN outperform the other used algorithms with an R2t = 0.86, RMSEt = 1104 mg kg-1, and RPD = 3.23 for the TP. For P-Olson the RSVM coupled with GA-PLS outperforms all other methods with an R2t = 0.77, RMSEt = 20.09 mg kg-1, and RPD = 1.90. The use of hierarchical ascendant clustering (HAC) helps to reduce the heterogeneity of soil and helps to increase the quality of prediction. The obtained results show that the models for clayey and loamy soils yielded an excellent prediction quality with an R2t = 0.88, RMSEt = 857.33 mg kg-1, and RPD = 4.10 using BPNN with PARtest for TP. Furthermore, an R2 = 0.83 RMSE = 8.30 mg kg-1, RPD = 11.00 3.11using RSVM with GA-PLS for P-Olson. Thus, the texture has a significant effect on the prediction accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...